An anonymous reader writes “The idea is to take a standard graphene field-effect transistor and find the circumstances in which it demonstrates negative resistance (or negative differential resistance, as they call it). They then use the dip in voltage, like a kind of switch, to perform logic.They show how several graphene field-effect transistors can be combined and manipulated in a way that produces conventional logic gates. Graphene-based circuit can match patterns and it has several important advantages over silicon-based versions. Liu and co can build elementary XOR gates out of only three graphene field-effect transistors compared to the eight or more required using silicon. That translates into a significantly smaller area on a chip. What’s more, graphene transistors can operate at speeds of over 400 GHz.”… An anonymous reader writes “The idea is to take a standard graphene field-effect transistor and find the circumstances in which it demonstrates negative resistance (or negative differential resistance, as they call it). They then use the dip in voltage, like a kind of switch, to perform logic.They show how several graphene field-effect transistors can be combined and manipulated in a way that produces conventional logic gates. Graphene-based circuit can match patterns and it has several important advantages over silicon-based versions. Liu and co can build elementary XOR gates out of only three graphene field-effect transistors compared to the eight or more required using silicon. That translates into a significantly smaller area on a chip. What’s more, graphene transistors can operate at speeds of over 400 GHz.”

Read more of this story at Slashdot.






Read more http://rss.slashdot.org/~r/Slashdot/slashdot/~3/AXF7UijDNkI/story01.htm