muon-catalyzed writes “The incredible ‘first light’ images captured by the new adaptive optics system called Magellan|AO for “Magellan Adaptive Optics” in the Magellan II 6.5-meter telescope are at least twice as sharp in the visible light spectrum as those from the NASA’s Hubble Space Telescope. ‘We can, for the first time, make long-exposure images that resolve objects just 0.02 arcseconds across — the equivalent of a dime viewed from more than a hundred miles away,’ said Laird Close (University of Arizona), the project’s principal scientist. The 6.5-meter Magellan telescopes in the high desert of Chile were widely considered to be the best natural imaging telescopes in the world and this new technology upgraded them to the whole new level. With its 21-foot diameter mirror, the Magellan telescope is much larger than Hubble with its 8-foot mirror. Until now, Hubble always produced the best visible light images, since even large ground-based telescope with complex adaptive optics imaging cameras could only make blurry images in visible light. The core of the new optics system, the so-called Adaptive Secondary Mirror (ASM) that can change its shape at 585 points on its surface 1,000 times each second, counteracts the blurring effects of the atmosphere.”… muon-catalyzed writes “The incredible ‘first light’ images captured by the new adaptive optics system called Magellan|AO for “Magellan Adaptive Optics” in the Magellan II 6.5-meter telescope are at least twice as sharp in the visible light spectrum as those from the NASA’s Hubble Space Telescope. ‘We can, for the first time, make long-exposure images that resolve objects just 0.02 arcseconds across — the equivalent of a dime viewed from more than a hundred miles away,’ said Laird Close (University of Arizona), the project’s principal scientist. The 6.5-meter Magellan telescopes in the high desert of Chile were widely considered to be the best natural imaging telescopes in the world and this new technology upgraded them to the whole new level. With its 21-foot diameter mirror, the Magellan telescope is much larger than Hubble with its 8-foot mirror. Until now, Hubble always produced the best visible light images, since even large ground-based telescope with complex adaptive optics imaging cameras could only make blurry images in visible light. The core of the new optics system, the so-called Adaptive Secondary Mirror (ASM) that can change its shape at 585 points on its surface 1,000 times each second, counteracts the blurring effects of the atmosphere.”

Read more of this story at Slashdot.






Read more http://rss.slashdot.org/~r/Slashdot/slashdot/~3/VcXfb07_YqU/story01.htm