gentryx writes “In scientific computing a huge pile of code is still written in Fortran. One reason for this is that codes often evolve over the course of decades and rewriting them from scratch is both risky and costly. While OpenMP and OpenACC are readily available for Fortran, only few tools support authors in porting their codes to MPI clusters, let alone supercomputers. A recent blog post details how LibGeoDecomp (Library for Geometric Decompostition codes), albeit written in C++, can be used to port such codes to state-of-the-art HPC systems. Source code modification is required, but mostly limited to restructuring into a new pattern of subroutines.”… gentryx writes “In scientific computing a huge pile of code is still written in Fortran. One reason for this is that codes often evolve over the course of decades and rewriting them from scratch is both risky and costly. While OpenMP and OpenACC are readily available for Fortran, only few tools support authors in porting their codes to MPI clusters, let alone supercomputers. A recent blog post details how LibGeoDecomp (Library for Geometric Decompostition codes), albeit written in C++, can be used to port such codes to state-of-the-art HPC systems. Source code modification is required, but mostly limited to restructuring into a new pattern of subroutines.”

Read more of this story at Slashdot.






Read more http://rss.slashdot.org/~r/Slashdot/slashdot/~3/jRvh51fVTs8/story01.htm